次の計算をしましょう。
2、4x/3+7x/6=5
この2つの計算は、計算の仕方が違います。
今日はこの違いを見てみましょう!
解答
文字式の計算について
まずは、1番の4x/3+7x/6を計算しましょう。
この1番目のように、
(i)式の中に文字(今回はx)が入っており、
(ii)式の中に「=」が入っていない
という2つの特徴がある式のことを「文字式」と言います。
なので4x/3+7x/6は文字式に分類されます。
文字式の計算では
「同じ文字がある項どうしを計算しつくす」
ことが目的です。それでは、実際に解いていきましょう
1、4x/3+7x/6の計算に入ろう!
この式には、「4x/3」と「7x/6」という2つの項があり、
どちらにもxという文字がついています。
なので、この2つの項をまとめなければなりません。
しかも、今回はどちらの項も分数なので、通分も考えます。
それでは、計算に入りましょう。
4x/3と7x/6の分母を6に合わせます。
4x/3=8x/6(分母を6にするために、分子と分母にそれぞれ2をかける)
7x/6=7x/6(分母がすでに6なので、そのまま)
よってこの計算は
4x/3+7x/6=8x/6+7x/6=15x/6
最後に15x/6を3で約分して
15x/6=5x/2
となります。
2、4x/3+7x/6=5を解こう!
この式は、計算式中に「=」があるので、方程式です。
方程式の計算は前回の知識を使って解いていきましょう。
まずは、分数を消すために、両辺に6をかけます。
すると、
左辺=(4x/3+7x/6)×6=8x+7x=15x
右辺=5×6=30
よって、計算式は
15x=30
となりました。これを解くと、前回の計算を思い出せば、
両辺に1/15をかければよいということになるので、
x=2
となります。
何が違かったのか
ここで、結局この2つの計算は何が違かったのかをもう一度見ておきます。
1番では分数があったにもかかわらず両辺に6をかけて消すことを
しなかったのに対し、
2番では両辺に6をかけることで、式の中の分数を消すことが出来ました。
それでは、1番の計算でも6をかけて分数を払えるかというと、
こたえは「NO」です。
今回、1番の答えは「5x/2」となりましたが、1番で6をかけると
「15x」という5x/2の6倍にあたる数が答えとして出てきてしますのです。
文字式は、=による右辺が見当たらないので、こういうことは出来ないのです。
分数を消せるのは、式の中に「=」があるだけ、ということを覚えておいてください。
数学を勉強したい!学び直したい!けれど、何から始めればいいのかわからない...
大人塾では数学を学びなおすことができるコースをご用意しております。
【Eラーニング】(中学数学まで)
【通学】(数ⅡB まで)
お気軽にお電話でご予約下さい。スマホの方はここをタップすると電話ができます。
Line@からもお問合せ・カウンセリングご予約承り中です。
友達にならずにトークのみでお問合せ可能です。お気軽にご連絡ください!